[Total No. of Questions - 9] [Total No. c rinted Pages - 3]

B. Tech 2nd Semester Examination

Engineering Physics-II (NS)

NS-105

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, select one question from each sections A, B, C and D. Section E (question 9) is compulsory. Assume the missing data.

SECTION - A

- Define the terms : unit cell, lattice, basis and crystal structure. What is Bravias lattice? Discuss with suitable example. (10)
 - What is interplanar spacing? Derive expression for it. Calculate interplanar spacing for the lattice plane of Miller indices (321) for a cubic lattice with lattice parameter a=5.62A°. (10)
- What do you understand by diffraction of X-rays? Discuss Bragg's law for the diffraction of X-rays by crystals. The angle of reflection for monochromatic X-rays for a crystal whose atomic spacing is 2.5 A⁰ is 45°. Calculate the wave length of X-rays. (10)
 - (b) Discuss classical free electron theory. Mention its main drawbacks. (10)

[P.T.O.]

SECTION - B

- Explain the difference between a metal, a semiconductor and an insulator on the basis of energy band gap. Discuss Kronig-Penney model briefly. (15)
 - Discuss the significance of effective mass of the electron. (5)
- What is Fermi energy? Discuss its dependence on temperature. The Fermi level for potassium is 1.99eV. Calculate the velocity of the electrons at the Fermi level. (10)
 - Draw the Brillouin zones for a two dimensional square lattice of side "a". (10)

SECTION - C

- What do you mean by polarization of dielectrics? Explain various types of polarization. (10)
 - Draw and explain B-H graph for ferromagnetic material and discuss its significance. (10)
- The dielectric constant of helium at 0°C and one 6. (a) atmospheric pressure is 1.000074. Determine the dipole moment induced in each helium atom when the gas is in an electric field of intensity 9×105V/m. (10)
 - Explain the soft and hard superconductors. (10)

SECTION - D

- Distinguish between spontaneous and stimulated emission. Explain various components of laser system. (10)
 - Discuss various losses in optical fibers. How they can be minimized? (10)

- 8. (a) Obtain the relationship between Einstein's coefficients using concept of interaction of radiation with matter and discuss its significance. (10)
 - (b) Distinguish between single mode and multimode fibers. What are main advantages of optical fibers over conducting wires? (10)

SECTION - E

- 9. (a) Discuss four level pumping scheme in lasers.
 - (b) Draw [111] and $[\overline{1}\overline{1}1]$ directions in a cubic crystal.
 - (c) Define dielectric constant. How it is determined experimentally?
 - (d) Draw structure of optical fiber cable.
 - (e) Draw block diagram of optical fiber communication system.
 - (f) Why are ferrites preferred over ferromagnetic materials at high frequency as a core material?
 - (g) Define persistent current and critical temperature.
 - (h) Determine the Millar indices of a plane that makes intercepts on a, b, and c, axes equal to 3A°, 4A°, and 3A° in a tetragonal crystal with c/a ratio as 1.5.
 - Distinguish between ferri-magnet and ferromagnetic materials.
 - (j) What do you mean by optical window? (2×10=20)